Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.24.485596

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with various neurological complications. SARS-CoV-2 infection induces neuroinflammation in the central nervous system (CNS), whereat the olfactory bulb seems to be involved most frequently. Here we show differences in the neuroinvasiveness and neurovirulence among SARS-CoV-2 variants in the hamster model five days post inoculation. Replication in the olfactory mucosa was observed in all hamsters, but most prominent in D614 inoculated hamsters. We observed neuroinvasion into the CNS via the olfactory nerve in D614G-, but not Delta (B.1.617.2)- or Omicron BA.1 (B.1.1.529) inoculated hamsters. Neuroinvasion was associated with neuroinflammation in the olfactory bulb of hamsters inoculated with D614G but hardly in Delta or Omicron BA.1. Altogether, this indicates that there are differences in the neuroinvasive and neurovirulent potential among SARS-CoV-2 variants in the acute phase of the infection in the hamster model.


Subject(s)
Coronavirus Infections , Central Nervous System Diseases , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.15.435472

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with a wide variety of neurological complications. Even though SARS-CoV-2 is rarely detected in the central nervous system (CNS) or cerebrospinal fluid, evidence is accumulating that SARS-CoV-2 might enter the CNS via the olfactory nerve. However, what happens after SARS-CoV-2 enters the CNS is poorly understood. Therefore, we investigated the replication kinetics, cell tropism, and associated immune responses of SARS-CoV-2 infection in different types of neural cultures derived from human induced pluripotent stem cells (hiPSCs). SARS-CoV-2 was compared to the neurotropic and highly pathogenic H5N1 influenza A virus. SARS-CoV-2 infected a minority of individual mature neurons, without subsequent virus replication and spread, despite ACE2, TMPRSS2 and NPR1 expression in all cultures. However, this sparse infection did result in the production of type-III-interferons and IL-8. In contrast, H5N1 virus replicated and spread very efficiently in all cell types in all cultures. Taken together, our findings support the hypothesis that neurological complications might result from local immune responses triggered by virus invasion, rather than abundant SARS-CoV-2 replication in the CNS.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL